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Investigation of the relationship between drinking water quality and landform classes 11 

using fuzzy AHP(case study: south of Firozabad, east of Fars province, Iran)  12 

 13 

Abstract 14 

In this study, fuzzy analytic hierarchy process (AHP) is used to study the relationship between drinking 15 

water quality and landform classes in south of Firozabad, east of Fars province, Iran. For determination 16 

of drinking water quality, parameters of calcium (Ca), chlorine (Cl), magnesium (Mg), thorium (TH), 17 

sodium (Na), electrical conductivity (EC), sulfate (So4) and total dissolved solids (TDS) were used. It 18 

was found that 8.29% of the study area have low water quality; 64.01%, moderate; 23.33%, high; and 19 

very high, 4.38%. Areas with suitable drinking water quality are located in parts of the southeast and 20 

southwest parts of the study area. The relationship between landform class and drinking water quality 21 

show that drinking water quality is high in the stream, valleys, upland drainages and local ridge classes, 22 

and low in the plain small and midslope classes. 23 

Keywords: Drinking water quality, fuzzy AHP method, GIS, landform, south of Firozabad. 24 

 25 

1. Introduction 26 

Landform characteristics can affect the direction of water movement and water quality. Hence, in the 27 

different landforms, there is different water quality (Bise, 2013). To this end, studies on the relationship 28 

between landform classes and water quality have received significant attention. For example, William et 29 

al. (2007) investigated runoff and water quality from three soil landform units on mancos shale. A survey 30 

of sediment basins in steep, dissected shale up lands indicated that an average of 1.25 Mg/ha/year of 31 

sediment is produced by that landform unit carefully designed and located basin plugs can be used 32 

effectively to trap sediment, water, and salt from dissected shale uplands. Mehdi et al. (2012) determined 33 

agricultural land use scenarios for modelling future water quality. The results showed that there is 34 

relationship between types of land use and water quality. The impact of land use on water quality was 35 

evaluated by Huang et al. (2013). The results indicated that there was significant negative correlation 36 

between forest land and grassland and the water pollution, and the built-up area had negative impacts on 37 

the water quality, while the influence of the cultivated land on the water quality was very complex. 38 

 39 
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In addition, different algorithms have been employed for the determination of water quality. Yonas (2012) 40 

developed a complementary modeling framework to handle systematic error in physically based 41 

groundwater flow model applications that used data-driven models of the errors during the calibration 42 

phase. The effectiveness of four error-correcting data-driven models, namely, artificial neural networks 43 

(ANN), support vector machines (SVM), decision trees (DT) and instance based weighting (IBW) was 44 

examined for forecasting head prediction errors, and subsequently updating the head predictions at 45 

existing and proposed observation wells. Rule based modeling (Manoucher, 2010) was used for spatial 46 

prediction of groundwater quality in Beaufort West, in the Karoo region of South Africa. The 47 

groundwater quality data from about 100 bore wells with a 30 years span collected between 1970 and 48 

2007 was used. The variables used in the analyses included chemicals such as chloride, sulphate, 49 

magnesium, sodium, phosphates and calcium. These were used as predictors for groundwater quality and 50 

electrical conductivity. Aliabadi and Soltanifard (2014) used fuzzy inference for determination of impact 51 

of water and soil electrical conductivity and calcium carbonate on wheat crop using. The inference 52 

system estimated the performance using soil EC, water EC and calcium carbonate in the soil as input 53 

parameters, and also analyzed them.  54 

 55 

The aim of this study is the determination of the relationship between landform classes and drinking 56 

water quality in south Firozabad, Iran. In this study, drinking water quality is evaluated using 57 

parameters of calcium (Ca), chlorine (Cl), magnesium (Mg), thorium (TH), sodium (Na), electrical 58 

conductivity (EC), sulfate (So4) and total dissolved solids (TDS). It is proposed that the most 59 

appropriate method to prepare drinking water quality maps is fuzzy analytic hierarchy process (AHP) 60 

in a geographic information system (GIS) environment. It is expected that the determination of the 61 

relationship between landform classes and drinking water quality will allow for the prediction of 62 

drinking water quality based on landform classes. The methodology employed in this study is 63 

summarized in Figure 1. 64 

 65 
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Preparing topographic 
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Landform classification

  Digital elevation model 
(DEM)

Comparing landform classification 
and drinking water quality 

TDSSo4TH Ca ECNaCl

66 
Figure 1. Flowchart for the methodology used in this study to determine the relationship between drinking 67 

water quality and landform classes. 68 

 69 

 2. Material and method 70 

2.1. Case study 71 

This study was carried out in south of Firozabad, east of Fars Province, Iran. It has an area of 722.91 km2, 72 

and is located between longitude of N 28° 36΄- 28° 57  ́and latitude  of E 52° 16  ́to 52° 46΄ (Figure 2). 73 

The altitude of the study area ranges from the lowest of 1,134 m to the highest of 2,885 m. The study area 74 

is abundantly watered by springs and the perennial Firozabad river. The main agricultural produce 75 

consists of grain, fruit, and vegetables, while the partly wooded mountains are used for pasture (Ebn al-76 

Balḵr, 1912; Sharifi-Rad, 2014). The assessment of land suitability for agricultural production in the 77 

region is vital, which should consider environmental factors and human conditions.  78 
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 79 

Figure 2. Location of the study area (digital elevation model (DEM) with spatial resolution of 30 m) 80 

(Source: http://earthexplorer.usgs.gov). 81 

  82 

One of these important factors is drinking water quality in the study area. In order to predict the 83 

variability of drinking water quality, calcium (Ca), chlorine (Cl), magnesium (Mg), thorium (TH), 84 

sodium (Na), electrical conductivity (EC), sulfate (So4), total dissolved solids (TDS) were prepared 85 

(Table 1) (Fars Regional Water Authority).  86 

Table 1. Descriptive statistics of the parameters for evaluation of water quality (Fars Regional Water 87 

Authority). 88 

Parameters Unit  Minimum  Maximum  mean Stdv dev. 

Calcium (Ca) mg/l 0 596 195 89 

Chlorine (Cl) mg/l 25 437 84 45 

Sodium (Na) mg/l 0 458 51 45 

Electrical, 

conductivity (EC) 

ds/m 0.39 1.75 0.71 0.15 

Magnesium (Mg) mg/l 0 569 182 80 

Sulfate (So4) mg/l 0 584 137 73 

Thorium (TH) mg/l 0 473 180 77 

Total Dissolved 

Solids (TDS) 

mg/l 0 954 295 117 

 89 
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2.2. Ordinary Kriging (OK)  90 

The input parameters for determination of drinking water quality are Ca, Cl, Mg, TH, Na, EC, So4 and TDS. 91 

Interpolation maps of these parameters are prepared using ordinary kriging (OK). The presence of a spatial 92 

structure where observations close to each other are more alike than those that are far apart (spatial 93 

autocorrelation) is a prerequisite to the application of geostatistics (Goovaerts, 1999). The experimental 94 

variogram measures the average degree of dissimilarity between unsampled values and a nearby data 95 

value, and thus, can depict autocorrelation at various distances. The value of the experimental variogram 96 

for a separation distance of h (referred to as the lag) is half the average squared difference between the 97 

value at z(xi) and the value at z (xi + h): (Oliver, 1990): 98 

 99 

        (1) 100 

 101 

where N is the number of pairs of sample points z (xi) and z(xi+h) separated by distance h and (h) is the 102 

semivariogram. From the analysis of the experimental variogram, a suitable model is then fitted, usually 103 

by weighted least squares and four parameters; sill, range, nugget and anisotropy. Sill refers to the 104 

variance value at which the curve reaches the plateau sill. The total separation distance from the lowest 105 

variance to the sill is known as range. Semivariogram modeling is a key step between spatial description 106 

and spatial prediction. The main application of kriging is the prediction of attribute values at unsampled 107 

locations. There are several models for semivariogram graphs. Figure 3 shows the general shapes and 108 

equations of the mathematical models used to describe the semivariance (McBratney and Webster, 1986). 109 

 110 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 3. Semivariogram graphs: (a) Spherical  (b) Circular  (c) Exponential  (d) Gaussian 111 

 112 

In order to compare, the different interpolation techniques, we examined the difference between known 113 

and predicted data using root mean squared error (RMSE) (Eq. (2)) 114 

         (2) 115 

 116 

where (xi) is the predicted value, z(xi) is the observed (known) value, and N is the number of values in 117 

the dataset (Johnston et al., 2001). 118 

 119 
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2.3 Fuzzy AHP  120 

Fuzzy classification 121 

Fuzzy logic was initially developed by Zadeh (1965) as a generalization of classic logic. He defined a 122 

fuzzy set by memberships function from properties of objects. A membership function assigns to each 123 

object a grade ranging between 0 and 1 .The value 0 means that x is not a member of the fuzzy set, while 124 

the value 1 means that x is a full member of the fuzzy set. Traditionally, thematic maps represent discrete 125 

attributes based on Boolean memberships, such as polygons, lines and points. Mathematically, a fuzzy set 126 

can be defined as following (Mc Bratney and Odeh, 1997):  127 

         (3) 128 

where μA is the membership function (MF) that defines the grade of membership of x in fuzzy set A. MF 129 

takes values between and including 1 and 0 for all A, with μA =0 meaning that x does not belong to A and 130 

μA=1 meaning that it belongs completely to A. Alternatively, 0< μA(x) <1 implies that x belongs in a 131 

certain degree to A. If X={x1,x2,….,xn} the previous equation can be written as following (McBratney and 132 

Odeh, 1997): 133 

)]}(,[......)](,[)](,{[ 2211 nAnAA xxxxxxA          (4) 134 

In simple terms, Equations (3) and (4) mean that for every x that belongs to the set X, there is a 135 

membership function that describes the degree of ownership of x in A. 136 

 137 

The development of GIS has contributed to facilitate the mapping of drinking water quality using both 138 

Boolean and fuzzy methods. For each of parameters, the following function was used (Shobha et al., 139 

2013): 140 
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In order to define the fuzzy rules, the drinking water quality standards in Table 2 were used. 142 

 143 

 144 

 145 
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 147 

Table 2. Drinking water quality standards (WHO) (Shobha et al., 2013) 148 

Parameters  
Permissible limit 

(mg/liter( 

Calcium (Ca) 200 
Chlorine (Cl) 200 

Magnesium (Mg) 150 
Thorium (TH) 500 
Sodium (Na) 200 

Electrical 
conductivity (EC) 

3000 

Sulfate (So4) 200 
Total Dissolved 

Solids (TDS) 
500 

Analytic hierarchy process (AHP) 149 

AHP is a structured technique for organizing and analyzing complex decisions. This method is based on a 150 

pair-wise comparison matrix. The matrix is called consistent if the transitivity (Equation (6)) and 151 

reciprocity (Equation (7)) rules are respected: 152 

 153 

aij = aik · akj            (6) 154 

a ij= 1/ a ji           (7) 155 

 156 

where i, j and k are any alternatives of the matrix.  157 

 158 

In a consistent matrix (Equation (8)), all the comparisons aij obey the equality aij= pi/pj , where pi is the 159 

priority of the alternative i. When the matrix contains inconsistencies, two approaches can be applied: 160 

nnjnn
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/.../.../

1

1

1111

        (8) 161 

In this method, pair-wise comparisons are considered as input, while relative weights are considered as 162 

outputs. The average of each row of the pair-wise comparison matrix is calculated and these average 163 

values indicate relative weights of compared criteria. 164 
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Drinking water 
parameters

Fuzzy map for each 
parameters

fuzzy drinking water 
quality map

Fuzzy logic

AHP

Combination of fuzzy and AHP methods 165 

Finally, in order to prepare the drinking water quality map, it is necessary to calculate the convex 166 

combination of the raster values containing the different fuzzy parameters. A1, … Ak are fuzzy subclasses 167 

of the defined universe of objects X, and W1, … Wk are non-negative weights summing up to unity. The 168 

convex combination of A1, … Ak is a fuzzy class A (Burrough, 1989), and the weights W1, … Wk are 169 

calculated using AHP and fuzzy method parameters that have been calculated in ArcGIS. Equations 9 and 170 

10 show the convex combination. 171 

  XxW
k

j

xAjA  



1

        (9) 172 

01
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j

k

j

j WW         (10) 173 

The Fuzzy AHP approach in this study has been divided into five stages, which are summarized in Figure 174 

4. 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 

Figure 4. Fuzzy AHP procedure for drinking water quality. 184 

 185 

All the model parameters maps are constructed by interpolation between 50 sampling points using the 186 

kriging method. Next, fuzzy logic is applied to create a fuzzy parameter map for each parameter. To 187 

arrive at an integrated evaluation using drinking water quality classes, the fuzzy parameter maps were 188 

aggregated into a drinking water quality map following a weighted summation using AHP.  189 

190 
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 191 

2.4. Landform Classification Using Topographic Position Index (TPI) 192 

TPI (Weiss, 2006) compares the elevation of each cell in a DEM to the mean elevation of a specified 193 

neighborhood around that cell. Positive and negative TPI values represent locations that are higher and lower 194 

than the average of their surroundings respectively. TPI values near zero are either flat areas (where the slope 195 

is near zero) or areas of constant slope (where the slope of the point is significantly greater than zero) (Weiss 196 

2006). 197 

TPI (Eq. (11)) compares the elevation of each cell in a DEM to the mean elevation of a specified 198 

neighborhood around that cell. Mean elevation is subtracted from the elevation value at the center (Weiss 199 

2006): 200 

         (11) 201 

where; 202 

= elevation of the model point under evaluation 203 

= elevation of grid 204 

n= the total number of surrounding points employed in the evaluation. 205 

 206 

Combining TPI at small and large scales allows a variety of nested landforms to be distinguished Table 3.  207 

 208 

Table 3. Landform classification based on TPI .(Source: Weiss 2006) 209 

Classes Description 

Canyons, deeply incised streams Small Neighborhood:To≤ -1 

Large Neighborhood:To≤ -1 

Midslope drainages, shallow valleys Small Neighborhood:To≤ -1 

Large Neighborhood: -1 <To< 1 

upland drainages, headwaters Small Neighborhood:To≤ -1 

Large Neighborhood:To≥ 1 

U-shaped valleys Small Neighborhood: -1 <To< 1 

Large Neighborhood:To≤ -1 

Plains small Neighborhood: -1 <To< 1 

Large Neighborhood: -1 <To< 1 

Slope ≤ 5° 

Open slopes Small Neighborhood: -1 <To< 1 

Large Neighborhood: -1 <To< 1 
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Slope > 5° 

Upper slopes, mesas Small Neighborhood: -1 <To< 1 

Large Neighborhood:To≥ 1 

Local ridges/hills in valleys Small Neighborhood:To≥ 1 

Large Neighborhood:To≤ -1 

Midslope ridges, small hills in plains Small Neighborhood:To≥ 1 

Large Neighborhood: -1 <To< 1 

Mountain tops, high ridges Small Neighborhood:To≥ 1 

Large Neighborhood:To≥ 1 

 210 

4. Results and Discussion 211 

4.1. Geostatistical analysis 212 

OK was used for the prediction of the drinking water quality parameters (TH, Ca, Mg, Cl, Na, EC, So4 213 

and TDS). In OK, in order to select the best method (Circular, Spherical, Exponential and Gaussian), 214 

measured nugget, partial sill and RMSE were used (Table 4). The RMSE of water parameters from Table 215 

4 shows that the lowest RMSE is the Gaussian method. Furthermore, these results indicate that the 216 

Gaussian model for OK is the best semivariogram model to show the strong spatial dependency for the 217 

water variable. 218 

Table 4. Sampling nugget, partial sill and RMSE of the different interpolated methods for predicted 219 

drinking water quality using MLR. 220 

Methods Model Parameter  Nugget Partial Sill RMSE 

OK  

Circular 

TDS 0.66 0.32 0.80 

TH 0.7 0.229 0.80 
Ca 0.71 0.20 0.92 
Mg  0.70 0.36 0.61 
Na  0.63 0.45 0.90 
Cl  0.57 0.38 0.77 

So4  0.62 0.29 0.91 
EC 0.57 0.26 0.56 

 Parameter  Nugget Partial Sill RMSE 

Spherical  

TDS 0.67 0.32 0.80 
TH 0.69 0.30 0.81 
Ca 0.72 0.20 0.92 
Mg  0.70 0.37 0.61 

Na  0.63 0.44 0.90 
Cl  0.57 0.37 0.77 

So4  0.62 0.30 0.91 
EC 0.55 0.28 0.56 

 Parameter  Nugget Partial Sill RMSE 
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Exponential  TDS 0.62 0.32 0.81 
TH 0.63 0.37 0.82 
Ca 0.70 0.20 0.93 
Mg  0.69 0.36 0.62 

Na  0.63 0.45 0.91 
Cl  0.55 0.35 0.78 

So4  0.56 0.36 0.92 
EC 0.44 0.39 0.62 

 Parameter  Nugget Partial Sill RMSE 

Gaussian  

TDS 0.67 0.32 0.79 
TH 0.73 0.27 0.80 
Ca 0.71 0.21 0.91 
Mg  0.71 0.36 0.60 
Na  0.64 0.45 0.90 
Cl  0.57 0.39 0.76 

So4  0.66 0.26 0.89 

EC 0.57 0.26 0.53 
 221 

Each of water parameters map that was predicted by OK is shown in Figure 5. The lowest So4, TDS, Na, 222 

Mg, TH and Ca were 0, while the highest values for the parameters were 589, 954, 458, 569, 473 and 569 223 

mg/l respectively. The lowest values for EC and Cl were 0.39 and 25 mg/l respectively, while the highest 224 

were 1.7 and 437 respectively. In the total, the results showed that expect for Ca and Mg, the other 225 

parameters had high values in the study area. 226 

 227 

  

TH Ca  
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So4 TDS 

Figure 5. Interpolated maps of the drinking water quality parameters generated using by OK. 228 

 229 

4.2. Fuzzy method 230 

The fuzzy maps prepared for the drinking water quality parameters are shown in Figure 6,  where MF is 231 

closer to 0 with decreasing drinking water quality, while MF is closer to 1 with increasing drinking water 232 

quality (Soroush et al., 2011).  Next, the AHP method was applied on the fuzzy parameter maps. The 233 

pair-wise comparison matrix used for preparation of the weights for each parameter in AHP are given in 234 

Table 5. The drinking water quality map generated using fuzzy-AHP is shown in Figure 7. 235 

 236 

  
TH Ca  
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Mg  Cl  

  
Na  EC 

  
So4 TDS 

Figure 6. Fuzzy maps of study area for the drinking water quality parameters. 237 
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Table 5. Pair-wise comparison matrix for drinking water quality. 238 

parameters Ca Cl  Na  EC Mg  So4 TH TDS Weight    

Ca 1 2 3 4 5 6 7 8 0.33 

Cl  0.5 1 2 3 4 5 6 7 0.23 

Na  0.33 0.5 1 2 3 4 5 6 0.16 

EC 0.25 0.33 0.5 1 2 3 4 5 0.11 

Mg  0.2 0.2 0.33 0.5 1 2 3 4 0.07 

So4 0.16 0.16 0.2 0.33 0.5 1 2 3 0.05 

TH 0.14 0.14 0.16 0.2 0.33 0.5 1 2 0.03 

TDS 0.12 0.12 0.14 0.16 0.2 0.33 0.5 1 0.02 

 239 

 240 

Figure 7. Drinking water quality map generated using fuzzy AHP. 241 

 242 

243 
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 244 

The drinking water quality map is classified into four classes (Mokarram et al., 2010; Shobha et al., 245 

2013): 246 

 Low (not suitable for drinking): < 0.25 247 

 Moderate: 0.25 – 0.50 248 

 High: 0.50 – 0.75 249 

 Very high (suitable for drinking): > 0.75 250 

 251 

The results of the classification are shown in Table 6. It is found that areas with suitable drinking water 252 

quality are located in the southeast and southwest parts of the study area (Figure 7). 253 

  254 

Table 6. Areas of the drinking water classes. 255 

Class  
Area 

(%) (km2) 

Low 8.29 59.90 

Moderate 64.01 462.72 

High 23.33 168.65 

Very high 4.38 31.64 

 256 

  257 

 258 

4.3. Landform classification 259 

In order to determine the relationship between landform classification and drinking water quality, a 260 

landform classification map for the study area was prepared using TPI. The TPI maps generated using 261 

small (3 cells) and large (45 cells) neighborhoods are shown in Figure 8. TPI is between -144 to 147 and -262 

287 to 492 for the small and large neighborhoods respectively. The landform maps generated based on the 263 

TPI values are shown in Figure 10. The classification has ten classes; high ridges, midslope ridges, upland 264 

drainage, upper slopes, open slopes, plains, valleys, local ridges, midslope drainage and streams (Figure 265 

9). The areas of the landform classes are shown in Figure 10. It is observed that the largest landform is 266 

streams, while the smallest is plains. 267 

 268 

 269 

 270 
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(a) (b) 

 271 

Figure 8. TPI maps generated using (a) small (3 cells) and (b) large (45 cells) neighborhoods. 272 

 273 

 274 

 275 

Figure 9. Landform classification using the TPI method. 276 
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 277 

Figure 10. Areas of the landform classes. 278 

 279 

The relationship between drinking water quality and landform classes were determined (Figure 11). It is 280 

found that drinking water quality is high for streams, valleys, upland drainages and local ridge classes, 281 

while the lowest drinking water quality is in the plain small and midslope classes. The characteristics of 282 

landform classes, such as slope and geology, determine the drinking water quality. For example, in the 283 

plain small class, due to the low slope, there are ample opportunities for high drinking water quality 284 

(Christiansen, 2004). Therefore, landform maps can be used to predict drinking water quality without 285 

water sampling and analysis in the laboratory.   286 

287 
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 288 

 289 

  290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

Figure 11. Relationship between drinking water quality and landform classes. 299 

 300 

 301 

5. Conclusions 302 

In this study, fuzzy AHP was used to study the relationship between drinking water quality and landform 303 

classes in south of Firozabad. It was found that 8.29% of the study area had low water quality; 64.01%, 304 

moderate; 23.33%, high; and 4.38%, very high. The lands suitable for drinking water are located in the 305 

southeast and southwest parts of the study area. The relationship between landform class and drinking 306 

water quality show that drinking water quality is high in the stream, valleys, upland drainages and local 307 

ridge classes, while the lowest drinking water quality is in the plain small and midslope classes. 308 

 309 

 310 
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